The Fréchet space $\omega $ admits a strictly stronger separable and quasicomplete locally convex topology
نویسندگان
چکیده
منابع مشابه
Strongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملLocally Correct Fréchet Matchings
The Fréchet distance is a metric to compare two curves, which is based on monotonous matchings between these curves. We call a matching that results in the Fréchet distance a Fréchet matching. There are often many different Fréchet matchings and not all of these capture the similarity between the curves well. We propose to restrict the set of Fréchet matchings to “natural” matchings and to this...
متن کاملSOME FIXED POINT THEOREMS IN LOCALLY CONVEX TOPOLOGY GENERATED BY FUZZY N-NORMED SPACES
The main purpose of this paper is to study the existence of afixed point in locally convex topology generated by fuzzy n-normed spaces.We prove our main results, a fixed point theorem for a self mapping and acommon xed point theorem for a pair of weakly compatible mappings inlocally convex topology generated by fuzzy n-normed spaces. Also we givesome remarks in locally convex topology generate...
متن کاملThe weak topology of locally convex spaces and the weak-* topology of their duals
These notes give a summary of results that everyone who does work in functional analysis should know about the weak topology on locally convex topological vector spaces and the weak-* topology on their dual spaces. The most striking of the results we prove is Theorem 9, which shows that a subset of a locally convex space is bounded if and only if it is weakly bounded. It is straightforward to p...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1981
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1981-0614898-3